INTEGRATION AND FUZZY-BASED AUTOMIZATION OF MANAGEMENT SYSTEMS TOWARDS SUSTAINABILITY IN CONSTRUCTION PROJECTS

ABBAS M ABD NAJIM

THESIS SUBMITTED IN FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF ENGINEERING AND BUILT ENVIRONMENT UNIVERSITI KEBANGSAAN MALAYSIA BANGI

2010 INTEGRASI DAN AUTOMASI BERASAS KABUR SISTEM PENGURUSAN KE ARAH KEMAPANAN PROJEK-PROJEK PEMBINAAN ABBAS M ABD NAJIM

TESIS YANG DIKEMUKAKAN UNTUK MEMPEROLEH IJAZAH DOKTOR FALSAFAH

FAKULTI KEJURUTERAAN DAN ALAM BINA UNIVERSITI KEBANGSAAN MALAYSIA BANGI

2010

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

August 2010

ABBAS M ABD NAJIM P38393

ACKNOWLEDGEMENTS

The author wishes to express his gratitude and indebtedness to his supervisor, Professor Engr. Dr. Amiruddin Ismail, who has been the architect of my Ph.D. studies and an admirable mentor from the very first day. It has been a privilege to work with such a brilliant supervisor and his vision will continue to enlighten me in the future. I am very thankful to Associated Professor Ir. Dr. Zamri Bin Chik who provided precious assistance throughout this Ph.D. program, he has shared his time, knowledge and experience with me, and he was a dependable source of support to me.

I wish to give thanks to the case study organization for participating in this project and for all the co-operation I received while performing my research there. I would specifically like to thank Civil and Structural Engineering Department, Faculty of Engineering and Built Environment, and the National University of Malaysia Universiti Kebangsaan Malaysia (UKM); their support was of great benefit to die successful completion of this project, without the financial support throughout the project fund no: 01-01-02-SF500, this project would not have been possible. The author acknowledges and appreciates the excellent cooperation of Dr. Yasin and Mr. Montadar for their technical advices.

Thanks and gratitude to my beloved mother, my brothers and sister for their motivation and supporting, and prays for my father and my brother; Al-Shaheed Ahmed whom I was wishing them to see my work. I thank my wife, Suhad, for her tremendous sacrifices, encourage and contributions along the duration of the study

Last but definitely not least, my deepest appreciation goes to my home country, Iraq, my University, Diyala University, and my friends whom have inspired me and helped me in every step of this process.

ABSTRACT

Implementation of management systems in accordance with standards such as ISO 9001 for quality, ISO 10006 guide for quality in projects, ISO 14001 for environmental management, OHSAS 18001 for occupational health and safety usually done with minimum considerations for the integration opportunity within construction organizations. Consequently, organizations often develop or implement management systems that suffer not only from isolation, but also from great difficulty in evaluating performance in light of the multiplicity of management systems, conflict of priorities and duplication of most auditing activities. The research first aim to identify the need and discuses the procedures for a conceptual framework to integrate isolated management systems, including a model for integration of selected management system standard requirements and a supporting methodological approach to enable such integration. The concepts applied included Quality Function Deployment (QFD) technique to determine the Integrated Management System (IMS) requirements of stakeholders, system approach and process-oriented approach for the IMS designing and implementation. The second aim to develop a framework for integrating the appropriate modelling techniques in order to evaluate the IMS performance. The proposed framework takes advantage of the information and knowledge elicited from construction organizations to model variables involved in the IMS system and risks that influence performance of construction organizations. Correlation analyses were use to identify the risk factors contribute to negative influence and their interactions. The correlation results then used to derive logical model to calculate the probabilistic impact of different risks. The framework utilizes fuzzy-logic and discrete event simulation to simulate the models developed for the IMS performance. Each part of the IMS system have three main variables namely significance, availability and probability of fail. Fuzzy logic and fuzzy set theory used to define variables and quantify the different components and elements of the sub-system and subsequently evaluate the total IMS performance using triangular translation model of fuzzy membership. Then, Expert System for Integrated Management System (ES-IMS) was design based on two models; IMS performance model that uses all components, elements and sub-elements to perform the evaluation process, and evaluation model evaluates the effect of different risks in construction sector that could negatively affect IMS performance and subsequently influence the organization behaviour. ES-IMS includes checklists that enable construction firms to check the rules and standards against their management system evaluation and perform self-inspections. The system considers user's experience level, to include expert mode and beginner mode. Construction engineers and managers in realistic case studies then evaluated the ES-IMS. The evaluation result verifies validity and efficiency of using ES-IMS in construction sector. ES-IMS has the potential for implementing a variety of standardized management codes in the construction industry and helps construction firms to evaluate and assess their management system and their performance.

INTEGRASI DAN AUTOMASI BERASAS KABUR SISTEM PENGURUSAN KE ARAH KEMAPANAN PROJEK-PROJEK PEMBINAAN

ABSTRAK

Pelaksanaan sistem-sistem pengurusan mengikut piawaian seperti ISO 9001 untuk kualiti, panduan ISO 10006 untuk kualiti dalam projek-projek, ISO 14001 untuk pengurusan persekitaran, OHSAS 18001 untuk keselamatan dan kesihatan pekerjaan lazimnya, peluang untuk penyepaduan dilakukan dengan pertimbangan yang minimum oleh sebuah organisasi pembinaan. Akibatnya, organisasi sering membangunkan atau menjalankan sistem-sistem pengurusan yang terjejas bukan sahaja dari segi pengasingan, tetapi amat sukar untuk menilai prestasi yang berkait dengan pelbagai sistem pengurusan, konflik keutamaan dan mengulangi hampir seluruh aktiviti-aktiviti pengauditan. Tujuan pertama penyelidikan ini ialah mengenal pasti keperluan dan membincangkan prosedur-prosedur dalam kerangka konsep untuk menyepadukan sistem-sistem pengurusan yang berasingan, termasuk model bersepadu bagi keperluan sistem pengurusan piawaian terpilih dan suatu pendekatan kaedah yang menyokong penyepaduan ini. Konsep yang digunakan termasuklah teknik Penggunaan Fungsi Kualiti (QFD) untuk menentukan keperluan Sistem Pengurusan Bersepadu (IMS) bagi pemegang amanah, pendekatan sistem dan orientasi proses untuk menyokong reka bentuk kerangka kerja IMS dan pelaksanaannya. Tujuan kedua, membangunkan kerangka kerja yang memadukan teknik pemodelan yang sesuai bagi menilai prestasi IMS. Cadangan kerangka kerja mengutamakan maklumat dan pengetahuan yang diperolehi daripada organisasi pembinaan bagi memodelkan pemboleh ubah-pemboleh ubah yang terlibat dalam sistem IMS dan risiko-risiko yang mempengaruhi prestasi organisasi pembinaan. Analisis korelasi digunakan untuk mengenal pasti faktor-faktor risiko yang menyumbang kepada pengaruh negatif dan interaksinya. Seterusnya, keputusan korelasi digunakan bagi menerbitkan model logik untuk mengira impak kebarangkalian bagi risiko-risiko yang berbeza. Kerangka kerja menggunakan logik kabur dan penyelakuan peristiwa diskrit untuk menyelakukan modelmodel yang dibangunkan untuk prestasi IMS. Setiap bahagian sistem IMS mempunyai tiga pemboleh ubah utama iaitu keberertian, ketersediaan dan kebarangkalian gagal. Logik kabur dan teori set kabur telah digunakan untuk mentakrifkan pemboleh ubah-pemboleh ubah itu dan menjumlahkan komponen-komponen dan unsur-unsur yang berbeza dalam sub-sistem dan kemudiannya menilai jumlah prestasi IMS menggunakan model terjemahan segitiga dalam keahlian kabur. Kemudian, Sistem Pakar bagi Sistem Pengurusan Bersepadu (ES-IMS) telah direka bentuk berasaskan dua model; model prestasi IMS yang menggunakan semua komponen, unsur-unsur dan sub-unsur untuk menjalankan proses penilaian dan model penilai yang menilai kesan perbezaan risikorisiko dalam sektor pembinaan yang boleh secara negatif menjejaskan prestasi IMS dan kemudiannya mempengaruhi kelakuan organisasi. ES-IMS menyediakan senarai semak yang membolehkan firma pembinaan memeriksa peraturan dan piawaian sistem pengurusan mereka dan melaksanakan pemeriksaan kendiri. Sistem ini mengambil kira tahap pengalaman pengguna, lantas menyediakan mod pakar dan mod orang biasa. Jurutera dan pengurus pembinaan telah menilai ES-IMS ini melalui kajian kes realistik. Keputusannya mengesahkan kesahihan dan kecekapan kegunaan sistem ini dalam sektor pembinaan. ES-IMS mempunyai potensi untuk melaksanakan kepelbagaian kod-kod pengurusan piawai dalam industri pembinaan dan membantu firma-firma pembinaan menimbang dan menilai sistem pengurusan dan prestasi mereka.

CONTENTS

	Page
DECLARATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
CONTENTS	vii
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	XX
LIST OF SYMBOLS	xxii

CHAPTER I INTRODUCTION

1.1	Introduction	1
1.2	Sustainability and integration of management systems	3
1.3	Problem statement	4
1.4	Objectives	6
1.5	Scope and limitation	8
1.6	Structure of the thesis	9

CHAPTER II MANAGEMENT SYSTEM AND INTEGRATION

2.1	Introduction		11
2.2	Management syste	ems	11
		development and standardization nent systems and isolation	11 14
2.3	Integration of mar	agement systems	16
	2.3.1 Integration	on conceptualization	16

	2.3.2	Outlines of integration	17
	2.3.3 2.3.4	Interdependency within a system Integration process	19 20
	2.3.4	Integration process	20
2.4	Promine	ent characteristics of integration	21
2.5	IMS cor	nponents	22
2.6	Quality	management system	23
	2.6.1 2.6.2 2.6.3 2.6.2	General Standards for quality management system Quality management system in projects Sustainability concepts and quality management system	23 23 24 24
2.7	Environ	mental management system	25
	2.7.1 2.7.2 2.7.3	General Standards for environmental Sustainability concepts and environment management system	25 26 26
2.8	Occupat	ional health and safety management system	28
	2.8.1 2.8.2 2.8.3	General Standards for health and safety Sustainability concepts and health & safety system	28 28 29
2.9	Techniq	ues used for developing new MS	30
2.10	Criteria	for model comparison	30
2.11	Current	models to develop new system	32
	2.11.1 2.11.2 2.11.3 2.11.4 2.11.5 2.11.6 2.11.7 2.11.8 2.11.9	The "Systems Approach" model The "St. Gall" model The "TQM" model The "company system" model Perceptual mapping models Expectancy value models Preference regression Conjoint analysis Quality function deployment (QFD)	32 33 33 33 34 34 35 35 36
2.12	Construe	ction industry risks	40
	2.12.1 2.12.2 2.12.3	Risk identification Risk analysis Determining the risk factors	41 42 43

2.13	Summary	43
CHAPTER	III MODELLING BACKGROUND FOR PERFORMANCE ASSESSMENT	
3.1	Introduction	44
3.2	Modelling approach	44
3.3	IMS performance modeling in construction projects	47
3.4	Modeling techniques	48
3.5	Definitions of fuzzy sets and fuzzy logic	49
	 3.5.1 Fuzzy sets theory 3.5.2 Fuzzy sets characteristics 3.5.3 Fuzzy sets operations 3.5.4 Fuzzy numbers 3.5.5 Relations and rules 3.5.6 Fuzzy logic 3.5.7 Risk ranking methodology 3.5.8 Using of fuzzy logic 	49 50 51 52 53 54 56 57
3.6	Performance evaluation	57
2.7		57 58 61
3.7	 Fuzzy expert system 3.7.1 Framework to assessment IMS performance 3.7.2 Definition of fuzzy based expert system 3.7.3 The fuzzy inference process 3.7.4 Designing of fuzzy expert systems 	63 63 64 66 69
3.8	Assumptions for the FBES	73
	 3.8.1 Infer the IMS performance level 3.8.2 Simulation modeling to estimate the IMS performance 3.8.3 Discrete-event simulation (des) 	73 75 77
3.9	Summary	80

CHAPTER IV RESEARCH METHODOLOGY

ix

4.1 4.2	Introduction Comparison of IMS models				
4.3	Analysis of IMS models				
4.4	Methodological approach for integration	87			
4.5	Overall research methodology	89			
4.6	Defining research objectives	91			
4.7	Adapting the QFD for generating integration elements	92			
4.8	Designing a conceptual framework for IMS	92			
	 4.8.1 Designing IMS model 4.8.2 Verification of IMS model 4.8.3 Designing the IMS implementation methodology 	92 94 95			
4.9	Modelling methodology	96			
	 4.9.1 Structure the IMS elements 4.9.2 Modelling of linguistic variables 4.9.3 Fuzzy logic modelling 4.9.4 Simulation modelling 	96 97 97 98			
4.10	Validating the IMS conceptual framework	98			
	 4.10.1 Case study & IMS scope definitions 4.10.2 Data collection 4.10.3 Data compilation 4.10.4 Gap analysis 	99 99 100 100			
4.11	Computer-fuzzy-based system	100			
4.12	Summary	102			
CHAPTER	V DEVELOPMENT OF IMS				
5.1	Introduction	103			
5.2	Integration strategy	103			
5.3	Break the link (1 st house of quality)	105			
5.4	Initial integration (2 nd house of quality)	111			
5.5	Development of interrelationship matrix	113			

	5.5.1	Priority	114
	5.5.2	Relationship	114
	5.5.3	Absolute importance value	114
	5.5.4	Correlation	115
5.6	Relatio	nship matrix calculations	115
5.7	Fully ir	ntegrated	118
	5.7.1	Priority analysis	118
	5.7.2	Correlation analysis	120
	5.7.3	Example for CCD representation	121
5.8	Logisti	c processes	123
	5.8.1	Processes identification and modification	123
	5.8.2	Employee training	126
	5.8.3	Deployment of available resources	127
5.9	Validat	tion of IMS model	127
5.10	IMS pe	erformance assessment	128
5.11	Summa	ary	129

CHAPTER VI MODELLING IMS SYSTEM

6.1	Introduc	Introduction				
6.2	Elicitati	on knowledge base	131			
	6.2.1	Development of questionnaire list	131			
	6.2.2	Characteristics and background of the respondents	132			
	6.2.3	Analyzing the collected experiences	134			
6.3	Ranking	g the IMS requirements	137			
	6.3.1	Significance assessment	137			
	6.3.2	Probability of fail	142			
	6.3.3	Risk assessment	145			
	6.3.4	Ranking IMS components and sub-systems	150			
	6.3.5	IMS performance assessment	151			
6.4	Conside	ering risks effect IMS performance	156			
6.5	Fuzzy b	ased expert system (FBES) development	159			
	6.5.1	Identifying the factors effect the system	159			

	6.5.2	Represent numbers:	inputs	and	outputs	to	the	model	as	fuzzy	162
	6.5.3	Build infere	ence rul	es							162
6.6	Summar	у									167

CHAPTER VII THE DEVELOPMENT OF EXPERT SYSTEM FOR THE INTEGRATED MANAGEMENT SYSTEM (ES-IMS

7.1	Introduction	168
7.2	Development environment for ES-IMS	169
7.3	The software (ES-IMS)	169
7.4	 7.3.1 Sub-systems zone: evaluation of "quality in organization" 7.3.2 Evaluation of risks effect 7.3.3 Displaying the results Summary 	171 186 191 206

CHAPTER VIII OVERALL SYSTEM VERIFICATION, EVALUATION AND VALIDATION

8.1	Introduction	207
8.2	Verify system stability and consistency	208
8.3	ES-IMS evaluation as a performance assessment tool	211
	8.3.1 The evaluators8.3.2 The evaluation criteria8.3.3 Evaluation analysis	211 212 214
8.4	Applicability and validation of ES-IMS	219
	 8.4.1 The case study organization 8.4.2 Implementation of IMS in CSO 8.4.3 ES-IMS validation criteria 8.4.4 Implementation and results comparison 8.4.5 Comments of CSO representative 	220 221 222 223 226
8.5	Novelty, inventiveness and industrial application	227
	8.5.1 Novelty8.5.2 Inventive steps8.5.3 Industrial application	228 228 228

	٠	٠	٠	
х	1	1	1	
	1	-	-	

	8.5.4 Conclusion	228
8.6	Summary	229
CHAPTER I	X CONCLUSIONS AND RECOMMENDATIONS	
9.1	Integration of management systems 23	
9.2	Performance assessment modelling 2	
9.3	Expert system and overall validation	
9.4	Summary of contributions 22	
9.5	Recommendations for future research	
REFERENCES		236
APPENDICI	ES	
Α	List of Publication and Awards	248
B	Requirements of the Four Standardized Management Systems	250
С	Correspondence between OHSAS 18001:2007, ISO 14001:2004, ISO 9001:2008 AND ISO 10006:2003	268
D	Integrated Management System: Requirements	272

EQuestionnaire list277FQuestionnaire results287

LIST OF TABLES

Table No.		Page
1.1	Survey for management standards certification	2
2.1	Benefits to an organization through adopting management systems	13
2.2	Criticisms due to using standards	13
2.3	List of some current standardized management systems	15
2.4	Prominent characteristics of management systems integration	21
2.5	Risk sources and factors	41
3.1	shows hypothetical example for a single element within the IMS	62
3.2	Discrete event simulation to overcome weakness of qualitative methods	78
4.1	Analysis of methodological models	85
4.2	Models Analysis (5 to 9) of IMS	86
5.1	Documentation requirements as stated in ISO 9001	107
5.2	Documentation requirements as stated in ISO 10006	108
5.3	Documentation requirements as stated in ISO 14001	108
5.4	Documentation requirements as stated in OHSAS 18001	109
5.5	Comparison for the four system requirements	110
5.6	Customer Requirements developed for IMS	112
5.7	Relationship matrix	116
5.8	Absolute and Relative importance for CR's and DR's	117
5.9	the priority- Relationship sequences for each design element	120
5.10	IMS requirements categories re-linked with the elements	123

5.11	Suggested Employee training program	126
6.1	Questions to rank the assessment levels of the IMS-requirements	134
6.2	Questions to rank the assessment of risk levels	134
6.3	Models developed to rank the assessment levels for the IMS- requirements and risk factors	135
6.4	Quality in Organization: Significance and Probability	138
6.5	Organization Quality System Significance and Probability of fail	139
6.6	Quality in projects significance and probability of fail	140
6.7	Environmental System: Significance and Probability	140
6.8	Safety system significance and probability of fail	141
6.9	Risk Factors: Significance and Probability calculations	145
6.10	Risk Factors Significance and Probability of occurrences	147
6.11	determination of X-Value relations for any risk factor	149
6.12	Summary of IMS significance relative to components	151
6.13	Summary of IMS significance relative to sub-systems	151
6.14	Exponential increment in number of rules with variable included	163
8.1	ES-IMS appearance evaluation	213
8.2	The summarized results of all criteria evaluation	215
8.3	CSO profile	221

LIST OF FIGURES

Figure No.		Page
2.1	General framework of QFD's or House of Quality.	38
3.1	Components influencing the IMS performance for construction operations.	47
3.2	Sample membership function for evaluating IMS Performance.	50
3.3	linguistic variable" Resources Management" in a natural language	55
3.4	Translational/triangular model for the availability function.	59
3.5	Components of fuzzy based expert system	65
3.6	Sample structure of a fuzzy expert system	67
3.7	Development of a fuzzy expert system	70
4.1	Research methodology and objectives.	90
4.2	Procedure for Designing an IMS Model	94
5.1	The three main stages for Integration strategy:	104
5.2	Initial cascade stage of pre-establishing the IMS requirements.	107
5.3	Correlation among CR's	118
5.4	the priorities for each design requirements	119
5.5	Crystal Correlation Diagram (CCD).	122
5.6	Organization processes diagram (deployment of processes)	125
6.1	Respondents characteristics	132
6.2	The three models for the IMS fuzzy representation	135
6.3	QMS in Organization model for Significance-Probability relation	142
6.4	QMS in Project model for Significance-Probability relation	142
6.5	EMS in Organization model for Significance-Probability relation	143
6.6	OHS in Organization model for Significance-Probability relation	143
6.7	Significance-Probability of occurrences for risk factors	147

6.8	IMS performance assessment tree	152
6.9	FBES flow chart	160
6.10	Logic operators for performance assessment.	164
7.1	Homepage of ES-IMS	168
7.2	User experience mode selection	168
7.3	"Sub-systems Zone" screen	169
7.4	An outline of the first sub-system processes	170
7.5	Examined areas within "Establish IMS" element.	171
7.6	Examined areas within "Documentation System" element	172
7.7	Examined areas within "Strategic Process" element	173
7.8	Examined areas within "Customer Focusing" element	173
7.9	Examined areas within "Leadership and cooperation" element	174
7.10	Examined areas within "Process and system Approach" element	174
7.11	Examined areas within "Risk Related Process" element	175
7.12	Examined areas within "management Reviews" element	175
7.13	Examined areas within "Resources Related Process" element	176
7.14	Examined areas within "Personnel Related Process" element	176
7.15	Examined areas within "Scope Related Process" element	177
7.16	Examined areas within "Purchasing Related Process" element	177
7.17	Examined areas within "Procurement Related Process" element	178
7.18	Examined areas within "Time Related Process" element	178
7.19	Examined areas within "Cost Related Process" element	179
7.20	Examined areas within "Communication Related Process" element	179
7.21	Examined areas within "Progress and Measures" element	180
7.22	Examined areas within "Control and Improvement" element	180
7.23	Examined areas within "Monitoring and Analysis" element	181

7.24	Examined areas within "Continual Improvement" element	181
7.25	Beginner mode: Main element (1 to 8)	182
7.26	Beginner mode: Main element (9 to 16)	183
7.27	Beginner mode: Main element (16 to 20)	183
7.28	sub-system assessment status	184
7.29	Risk effect evaluation framework	186
7.30	risk assessment: general risks	187
7.31	Risk assessment: Design and Financial risks	187
7.32	Risk assessment: Political, Regulatory and Natural risks	188
7.33	Risk assessment: miscellaneous risks grouped in General Risks	188
7.34	Risk assessment: miscellaneous risks grouped in General Risks	189
7.35	Different results representation methods	190
7.36	Statistical representation of IMS system, sub-system and components	190
7.37	3D Histogram representation in ES-IMS system	191
7.38	2D Graph representation in ES-IMS system	192
7.39	Line chart representation in ES-IMS system	192
7.40-a	3D Histogram representation for the comparison of availability with / without Risks and significance	193
7.40-b	2D Graph representation for the comparison of availability with / without Risks and significance	193
7.40-с	Line chart representation for the comparison of availability with / without Risks and significance	194
7.41	detail representation for the ES-IMS system	194
7.42	Example for the option in detailed representation of the ES-IMS system	195
7.43	Example for the results in detailed representation of ES-IMS system	195
7.44	The options in the translation mode	196
7.45	Example for the results in fuzzy representation of the ES-IMS system	197

7.46	Detailed assessment options	197
7.47	Fuzzy assessment of availability without risk	198
7.48	Fuzzy assessment of availability with risk	198
7.49	Fuzzy assessment of significance	199
7.50	Fuzzy assessment of fail probability	199
7.51	Risks assessment screen	200
7.52	Risk factor availability, significance and probability of occurrences	201
7.53	Numerical representation of ES-IMS system	202
7.54	Numerical assessment of IMS components and sub-systems	202
7.55	Numerical assessment of the significance of risk factors	203
7.56	Numerical assessment for the availability of the elements of a sub- system	203
8.1	Example 1: One sub-system "QS in organization" assessment	206
8.2	Example 2: Assessment results for four sub-systems considering risk effect	206
8.3	Example 3: Assessment results for four sub-systems with considering risk effect	207
8.4	Example 4: Assessment results for four sub-systems with considering risk effect	208
8.5	Evaluation of the expert system appearance	213
8.6	Evaluation of the user interface	213
8.7	Evaluation of the structured components	214
8.8	Evaluation of the performance model	214
8.9	Evaluation of the results appropriateness	215
8.10	Evaluation of the overall assessment	215
8.11	Results of the assessment for organization	220
8.12	Results of the assessment for project	221
8.13	Comparison of ES-IMS results with CSO data.	222

LIST OF ABBREVIATIONS

AIHA-OHSMS Occupational Health and Safety Management System of the American Industrial Hygiene Association CCD **Crystal Correlation Diagram** CRs **Customer Requirements** CSA **Construction Safety Advisor** CSA Construction Safety Advisor CSO Case Study Organization **Discrete Event Simulation** DES Doc Documentation DRs **Design** requirements EMS Environmental Management System ES-IMS Expert System for the Integrated Management System FBES Fuzzy-Based Expert System HOQ House of Quality HSE Health and Safety Executive, United Kingdom IEC Institute Electro-technical ILO International Labour Organization ILO-OSH Guidance on Occupational Safety and Health Management Systems of the International Labour Organization IMS **Integrated Management System** ISO International Organization for Standardization MF The membership functions MS Management System MSs Management Systems OHS, H&S Occupational Health and Safety **OHSAS** Occupational Health and Safety Management System

OR	Organization
OSHA	Occupational Safety and Health Administration
PDCA	Plan-Do-Check-Act
PMS	Quality Management System for Projects
PQMAF	Project Quality Management Assessment Framework
PR	Product Realization
QFD	Quality Function Deployment Model
QMS	Quality Management System
R&D	Research and Development
RM	Resources Management
SIM	The Separate Input-Process Method
SIRIM	Standards and Industrial Research Institute of Malaysia
TQM	Total Quality Management
UAE	United Arab Emirates
UKAS	United Kingdom Accreditation Service
I/O's	Inputs / Outputs

LIST OF SYMBOLS

Ai	Availability of a particular component (i)
AIj	Absolute importance for element (j)
f	The frequency of an element
FS	Fuzzy Set
L	Risk relation to Requirement (it is either 1 if there is a relation, or Zero if there is no relation, refer to Appendix C3)
MF	Membership function
PE_i	Performance of sub-element(E_{ij})
Pi	Probability occurrence (for risks) or Probability of fail for a particular component (i)
RCi	The Reduction Coefficient
RFi	Significance for risk factor (<i>i</i>)
RFSij	Relative value of fuzzy set (ij)
Rij	Relationship rating representing the strength of the relationship between Customer Requirements (CR) and Design Requirements (DR)
RIj	Relative Impact rating
Si	Significance of a particular component (<i>i</i>)
$\mu_A(x)$	The membership function that represent the value to which any element x in the fuzzy set A belongs to the fuzzy set A
Wi	Relative weight refer to priority of category (i.e., relative importance weight)
X-Value	Intermediate relation for any risk factor using to identify the impact on IMS performance